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Summary. In case–control studies of inherited diseases, participating subjects (probands) are often inter-
viewed to collect detailed data about disease history and age-at-onset information in their family members.
Genotype data are typically collected from the probands, but not from their relatives. In this article, we
introduce an approach that combines case–control analysis of data on the probands with kin–cohort analysis
of disease history data on relatives. Assuming a marginally specified multivariate survival model for joint
risk of disease among family members, we describe methods for estimating relative risk, cumulative risk,
and residual familial aggregation. We also describe a variation of the methodology that can be used for
kin–cohort analysis of the family history data from a sample of genotyped cases only. We perform simula-
tion studies to assess performance of the proposed methodologies with correct and misspecified models for
familial aggregation. We illustrate the proposed methodologies by estimating the risk of breast cancer from
BRCA1/2 mutations using data from the Washington Ashkenazi Study.
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1. Introduction
The case–control sampling design, which has been widely used
in classical questionnaire-based epidemiologic studies, is now
being increasingly used to examine genetic association and
gene–environment interaction. This design, by collecting ex-
posure information retrospectively on a fixed number of dis-
eased (cases) and nondiseased subjects (controls), is efficient
for studying the etiology of rare diseases. In case–control stud-
ies of genetic factors, participating subjects (probands) are of-
ten interviewed to collect detailed data about disease history
and age-at-onset information in their family members. Geno-
type information is typically not available for the relatives of
the cases and controls. Standard analysis of such case–control
data involves fitting a logistic regression model to the case–
control outcome with genotype and family history treated
as covariates. From the classic results of Cornfield (1951),
Andersen (1970), and Prentice and Pyke (1979), it is well
known that this logistic regression analysis efficiently es-
timates the prospective odds ratios associated with the
covariates, which approximate relative risks for rare diseases.
The absolute risk of the disease cannot be estimated from
this analysis without external information on the marginal
probability of the disease in the population, which is needed
to correct the logistic regression intercept. Moreover, treating
family history as a covariate can create bias in parameter es-

timates due to inadequate adjustment for family size (Khoury
and Flander, 1995).

For case–control studies where both disease history and co-
variate status are available on relatives, Whittemore (1995)
and Zhao et al. (1998) developed likelihood- and estimating-
equation-based methodology, respectively, both in the binary
outcome setting, which uses all information from case–control
probands and their relatives to produce efficient estimates of
disease–covariate association and magnitude of familial aggre-
gation. For a similar design, Li, Yang, and Schwartz (1998),
Hsu et al. (1999), and Shih and Chatterjee (2002) devel-
oped different likelihood and pseudo-likelihood methodologies
in the survival analysis setting that can account for censor-
ing and age-at-onset information of disease. None of these
methodologies, however, are directly applicable for the case–
control study design we consider in the present article, where
information on the covariate of interest, namely the genetic
variant under study, is not available on the relatives.

Wacholder et al. (1998) developed a method to estimate
gene-specific cumulative risk from analysis of “kin–cohort”
data and the ages at disease onset, if any, among the probands’
relatives. In this approach, the disease status and age at on-
set of the relatives are treated as outcome variables of inter-
est in a survival analysis. The authors showed that although
the relatives are not genotyped, one can estimate the
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age-specific cumulative risk (penetrance) of the disease asso-
ciated with different genotypes by linking the outcome data
from the relatives to the genotype of the probands. Chatter-
jee and Wacholder (2001) developed a “marginal-likelihood”
approach for analyzing kin–cohort data, which overcomes
various limitations of the original analytic method of
Wacholder et al. (1998), including the possibility of obtain-
ing nonmonotone estimates of age-specific cumulative risk
function.

Gail et al. (1999a, 1999b) called the case–control design
with detailed family history information that collects geno-
type data on probands the “genotyped proband” design. They
assumed that cases and controls were sampled randomly from
all cases and controls in the population, respectively. The au-
thors derived the likelihood of the genotypes of the probands
and disease history data of the relatives conditional on the
case–control status of the probands. They showed that this
likelihood can be factored as the product of a traditional
“case–control likelihood” of the genotype of probands given
their case–control status and a “kin–cohort likelihood” for
the relatives’ disease outcome data given the genotype of the
proband. Moore et al. (2001) used this likelihood framework
to develop methods of parameter estimation for survival mod-
els. These authors noted that full maximum likelihood estima-
tion using the true likelihood of the data can be computation-
ally challenging and presented alternative pseudo-likelihood
methods. These pseudo-likelihood approaches, however, fail
to extract valuable relative risk information from case–control
data and hence are inefficient.

Gail et al. (1999a, 1999b) and Chatterjee and Wacholder
(2001) pointed out that the likelihood used by Gail et al.
(1999a) is based on the assumption that all familial outcomes
were conditionally independent given individuals’ genotypes
and that violation of this assumption of no “residual famil-
ial aggregation” can lead to biased parameter estimates. The
effect of “residual familial aggregation” on cumulative risk
estimation using disease incidence data of relatives of a case-
enriched or even a case-only sample of subjects has been a
matter of considerable debate in recent years (Begg, 2002;
Gong and Whittemore, 2003).

The goal of the current article is to develop a com-
bined approach of kin–cohort and case–control analysis that
has the following strengths: (i) gives a computationally fea-
sible method for extracting maximal information on rela-
tive risk and cumulative risk parameters from the data;
(ii) relaxes the key assumption of “no residual familial ag-
gregation” and quantifies the magnitude of such correla-
tion; and (iii) automatically accounts for potential ascer-
tainment bias in absolute risk estimation. In addition, these
methodologies, with some modification, can be used for kin–
cohort analysis of the family history data from a sam-
ple of genotyped cases only. We develop the methodology
by extending and combining a number of estimation tech-
niques that we have developed over a number of years in
three different but related areas, namely kin–cohort anal-
ysis (Wacholder et al., 1998; Chatterjee and Wacholder,
2001), genotype-proband design (Gail et al., 1999a; Moore
et al., 2001), and case–control family data (Shih and
Chatterjee, 2002).

2. Methods
2.1 Data Structure
Consider a case–control study design where N0 cases and N1

controls have been randomly sampled from the cases and the
controls in an underlying population, respectively. Let Y P

i =
(TP

i , ΔP
i ), i = 1, . . . ,N 0 + N 1 denote the phenotype for N 0 +

N 1 case–control subjects (probands). Here, if the ith subject is
a case, ΔP

i = 1 and TP
i denotes the age at onset of the disease

and if the ith subject is a control ΔP
i = 0 and TP

i denotes the
age of the subject at interview. Suppose the ith proband re-
ports disease history for Mi relatives and let Y R

ij = (TR
ij , ΔR

ij),
j = 1, . . . ,Mi denote the phenotype history of these relatives.
Here, if the jth relative has been reported to have the disease
then ΔR

ij = 1 and TR
ij denotes the corresponding reported age

at onset and if the jth relative has been reported to be disease
free then ΔR

ij = 0 and Tij denotes the age of the relative at
the time of interview of the proband or age at death if the
relative had died before the study took place. Let GP

i denote
the genotype for the ith proband. Similarly, let GR

ij denote the
unobserved genotype for jth relative of the ith proband. Let
Y R

i = (Y R
i1 , . . . , Y

R
iMi

) and GR
i = (GR

i1, . . . , G
R
iMi

) denote the
vector of phenotypes and genotypes, respectively, for the Mi

relatives of proband i. For simplicity, we assume G is binary,
indicating presence (G = 1) or absence (G = 0) of a domi-
nant mutation. The proposed methodology, however, can be
extended in a straightforward way for other types of genotype
data. Let f denote the allele frequency for the mutation and
π = f 2 + 2f(1 − f) denote the carrier frequency, namely the
probability of carrying the mutation.

2.2 Model
We assume our goal is to estimate risk parameters in marginal
models for randomly selected gene carriers (G = 1) and non-
carriers (G = 0). Let λ0(t) denote the age-specific hazard func-
tion of the disease among noncarriers. We allow λ0(t) to be
completely unspecified (nonparametric). We will further as-
sume the hazard function for carriers (G = 1) is given by a
piecewise proportional hazard (PH) form

λ1(t) = λ0(t) exp {β(t)} with

β(t) =

K∑
l=0

βlI(ul ≤ t < ul+1), (1)

where u0 < u1 < u2 · · · < uK+1 are a set of prespecified knots
in the appropriate age range of interest. Although the tradi-
tional PH model assumes the proportionality factor β to be
constant over all ages, we prefer the piecewise PH model that
allows one to examine whether the effect of the gene varies
by age. Hereafter, we will denote β = (β0, β1, . . . ,βK)T . Of
course, the most flexible approach would be to assume λ1(t)
to be completely unspecified, an approach that we have previ-
ously considered for kin–cohort estimation that ignores ascer-
tainment (Chatterjee and Wacholder, 2001). Accounting for
ascertainment, in the nonparametric hazard models, however,
can be computationally challenging and may face an identi-
fiability problem. In many survival analysis problems, where
estimation of relative risk parameters are the focus of scien-
tific interest, the baseline hazard function λ0(t) is treated as
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a nuisance parameter, the estimation of which is avoided by
constructing an appropriate partial likelihood that only de-
pends on the relative risk parameters. In the context of this
article, however, estimation of λ0(t) is essential for obtaining
estimates of the cumulative risk parameters of interest.

To allow for residual familial aggregation given genotypes,
we consider a model for specifying joint risks of the disease
among the proband and his/her family members. We use cop-
ula models (Genest and McKay, 1986) which parameterize the
joint risk of the disease in terms of the marginal risk for in-
dividual family members and additional dependence param-
eter(s) that characterize the correlations between the fam-

ily members. Let SG(t) = exp {−ΛG(t)} = exp{−
∫ t

0 λG(s) ds}
denote the marginal survivor function for an individual rela-
tive in the family given his/her individual genotype (G), the
hazard function λG(s) being specified by the hazard model
given in formula (1). In the copula model, the joint survivor
function for a proband (m = 0) and his/her M family mem-
bers (m = 1, . . . ,M) is specified as

Pr(T0 > t0, T1 > t1, . . . , TM > tM |G0, G1, . . . , GM )

= Cθ{SG0(t0), SG1(t1), . . . , SGM
(tM )}, (2)

where Cθ(u1, . . . , um), θ ∈ Θ is a class of multivariate distribu-
tion functions defined on the product space of [0, 1]M+1 with
uniform marginal distributions. In this model, the parameter
θ can be interpreted as a measure of “residual familial aggre-
gation” that characterizes familial correlation of the disease
that cannot be explained by the gene under study. The ex-
act interpretation of θ, however, depends on the choice of the
copula function Cθ(u0, u1, . . . , uM ). For most of this article,
we use Clayton’s model (1978) that corresponds to the copula
function

Cθ(u0, u1, . . . , um) =

[
M∑

m=0

um
1−θ −M + 1

]1/(1−θ)

. (3)

Model (3) corresponds to constant value (θ) for the cross-ratio
function, a measure of local dependence between pairs of sur-
vival times that was introduced by Oakes (1989). The value
of θ = 1 corresponds to independence and θ > 1 corresponds
to positive dependence. Although in a restricted range, val-
ues θ ≤ 1 can be allowed to model negative correlation, in
this article we only allow for positive dependence (θ ≥ 1) for
modeling familial aggregation.

Inference in copula models for randomly sampled multi-
variate units with censored survival times was described by
Genest and Rivest (1993), Shih and Louis (1995), and Shih
(1998). Estimation of parameters in our framework, however,
is complicated by two factors: (i) ascertainment of families by
case–control selection of probands, and (ii) missing genotype
information for relatives. Li et al. (1998), Hsu et al. (1999),
and Shih and Chatterjee (2002) developed different methods
for analyzing familial data that can handle case–control as-
certainment of probands; all of these methods, however, as-
sume covariate information is available for both case–control
probands and their relatives. In the following, we extend the
method of Shih and Chatterjee (2002) to deal with missing
genotype data in the relatives.

2.3 Likelihoods
The likelihood of the data under case–control sampling and
with missing genotypes of the relatives can be written as (Gail
et al., 1999a, 1999b; Chatterjee and Wacholder, 2001)

L =

N∏
i=1

Pr
(
Y R

i , G
P
i

∣∣Yi0

)
=

N∏
i=1

Pr
(
Y R

i

∣∣GP
i , Yi0

)
×

N∏
i=1

Pr
(
GP

i

∣∣Yi0

)
= LKC × LCC . (4)

In (4), LKC can be viewed as an ascertainment corrected
likelihood for the “kin–cohort” data for the disease incidence
data of the relatives and LCC can be viewed as the retro-
spective case–control likelihood for the genotype data of the
probands given their own disease history and age information.
We observe that LCC conditions on both the disease status
and the age information for the probands. If cases and con-
trols are selected randomly from the population of diseased
and nondiseased subjects, an alternative likelihood for the
proband’s data could be formed by conditioning only on the
disease status (ΔP

i ) of the probands. There are, however, two
distinct disadvantages with such a likelihood. First, computa-
tion for such a likelihood could be complex as it would require
modeling the censoring distribution for the probands. Second,
such a likelihood will not be able to handle frequency-matched
case–control studies where subjects are sampled conditional
on both disease status and age-at-onset information. In con-
trast, the likelihood LCC , by conditioning on both TP and ΔP ,
avoids modeling the censoring distribution and retains the
ability to handle both matched and unmatched case–control
studies.

Now we consider computation of the likelihood L (4) in
terms of the model parameters defined in Section 2.2. First,
to compute LCC , we write

Pr
(
GP

i

∣∣Y P
i

)
=

Pr
(
Y P
i

∣∣GP
i

)
Prf

(
GP

i

)∑
g∈{0,1}

Pr
(
Y P
i

∣∣GP
i = g

)
Prf

(
GP

i = g
)

=
λGP

i

(
TP
i

)ΔP

SGP
i

(
TP
i

)
Prf

(
GP

i

)∑
g∈{0,1}

λg

(
TP
i

)ΔP

Sg

(
TP
i

)
Prf

(
GP

i = g
) . (5)

Above, the implicit assumption is that sampling of the
probands is random conditional on their disease status YP .
This assumption has important implications for prevalent
case–control studies where cases may be sampled long after
the incidence of the disease. If a disease is fatal and survival
after disease incidence is related to the gene under study, the
cases who survive to be recruited in the study would not be a
representative sample of the underlying population of cases.
In principle, it is possible to consider a more general form of
the likelihood that can account for such survival bias (Gail
et al., 1999a, 1999b; Gail and Chatterjee, 2004); computa-
tionally, however, such a generalization could be challenging.
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Next, we consider computation of LKC . We write,

Pr
(
Y R

i

∣∣GP
i , Y

P
i

)
=

Pr
(
Y R

i , Y
P
i

∣∣GP
i

)
Pr

(
Y P
i

∣∣GP
i

)

=

∑
g∈{0,1}Mi

Pr
(
Y R

i , Y
P
i

∣∣Gi = g, GP
i

)
Prf

(
Gi = g

∣∣GP
i

)
Pr

(
Y P
i

∣∣GP
i

) ,

(6)

where
∑

g∈{0,1}Mi represents the sum over all possible configu-

rations of genotypes of the Mi relatives and Prf (Gi = g |GP
i )

denotes the probability of the particular genotype configura-
tion g given the genotype of the proband, computed under
allele frequency f. Following techniques for likelihood calcu-
lation in multivariate analysis, Pr(Y R

i , Y P
i |Gi = g, GP

i ) in
formula (6) can be expressed in terms of the multivariate sur-
vivor function specified in equation (2) and its derivatives of
various orders. In particular, for Clayton’s copula model, the
formula for Pr(Y R

i , Y P
i |Gi = g, GP

i ) has been described in
detail in formula (4) of Shih and Chatterjee (2002).

Chatterjee and Wacholder (2001) introduced a variant of
the kin–cohort likelihood (LKC ) that has both computational
and robustness advantages. In this approach, which they orig-
inally termed the “marginal likelihood,” the family corre-
sponding to a proband and his/her M relatives are broken into
M relative-proband doublets and each such doublet is then
treated independent of the others, ignoring possible depen-
dence between doublets from the same family. More specif-
ically, the “marginal likelihood,” which more appropriately
can be called the “composite likelihood,” is written as

CLKC

=

N∏
i=1

Mi∏
j=1

Pr
(
Y R

ij

∣∣GP
i , Y

P
i

)

=

N∏
i=1

Mi∏
j=1

∑
g

Pr
(
Y R

ij , Y P
i

∣∣Gij = g,GP
i

)
Prf

(
Gij = g

∣∣GP
i

)
Pr

(
Y P
i

∣∣GP
i

) ,

(7)

where the bivariate probabilities Pr(Y R
ij , Y P

i |GR
ij , GP

i ) can be
computed as a special case of the computation for the multi-
variate survival probabilities that we discussed above. More-
over, the conditional probability of the gene-carrier status of
the individual relative given that of the proband, Pr(GR

ij |GP
i ),

can be computed in terms of allele frequency (f) assuming
standard Mendelian inheritance. Since its computation in-
volves only pairs of individuals at a time, the complexity of
the marginal likelihood, unlike that of the full likelihood, does
not increase with family size. Moreover, marginal likelihood
can be more robust to model misspecification for the multi-
variate distribution, as validity of the method relies only on
the correct specification of the bivariate distribution for the
relative-proband doublets.

2.4 Estimation
Direct maximization of the likelihood L = LKC × LCC or the
composite likelihood CL = CLKC × LCC jointly with respect
to the Euclidian parameters γ = (β, θ, f ) and nonparamet-
ric baseline hazard function λ0(t) is computationally difficult
and numerically unstable. We developed an estimation proce-
dure that is computationally tractable and yet retains statis-
tical efficiency by identifying different parts of the likelihood
which are most informative about the different parameters of
interest.

We first observe that λ0(t) is involved both in the kin–
cohort likelihood LKC (or CLKC ) and in the case–control like-
lihood LCC . Intuitively, however, it is clear that LCC , due to
conditioning on both disease status and age-at-onset informa-
tion, cannot contain much information about the baseline risk
of a disease. Thus, although in our modeling framework λ0(t)
can be theoretically identifiable from LCC , in practice LCC

would be expected to contain very little information about
λ0(t). Moreover, from the functional form of LCC given in
equation (5) we observe that optimization of LCC with re-
spect to the nonparametric baseline hazard λ0(t) would be
numerically challenging. Later we describe a simple and sta-
ble algorithm for estimation of λ0(t) for fixed value of γ, which
utilizes information from the kin–cohort likelihood CLKC .

Next, consider the Euclidian parameters γ = (θ, f , β).
Clearly, the case–control likelihood LCC does not involve the
familial aggregation parameter θ. Although both LKC and
CLKC involve the allele frequency parameter f, the kin–cohort
likelihoods are not intrinsically very informative about f, as
the relatives’ genotype data are not directly observed. To
avoid the related numerical problems, we propose to estimate f
using only the case–control likelihood LCC . Finally, we observe
that both case–control and kin–cohort data are informative
about hazard-ratio parameters (β) and thus we propose to
estimate them using the combined likelihood L = LKC × LCC

or CL = CLKC × LCC .
The final algorithm for implementing the estimation

method iterates among the following steps:� For fixed values of θ(s), f (s), and λ
(s)
0 (t), maximize CLKC

× LCC or LKC × LCC with respect to β to obtain β(s+1).� For fixed values of β(s+1), f (s), and λ
(s)
0 (t), maximize

CLKC or LKC with respect to θ to obtain θ(s+1).� For fixed values of β(s+1), θ(s+1), and λ
(s)
0 (t), maximize

LCC with respect to f to obtain f (s+1).� For fixed values of β(s+1), f (s+1), and θ(s+1), use the fol-
lowing expectation-solving (ES) algorithm to estimate
λ(s+1).

2.4.1 ES algorithm for nonparametric estimation of λ0(t) for
fixed γ. To introduce this method, some counting process no-
tation is useful. Define the processes Y R

ij (u) = I(TR
ij ≥ u),

N R
ij (u) = I(TR

ij ≤ u), and NR
++(u) =

∑
ij N

R
ij (u). Based on

results given is Hsu et al. (1999), we can write the hazard
function of a relative given his/her own genotype (GR) and
the proband’s disease status (TP , ΔP ) and genotype (GP ) as

λR(t |TP ,ΔP , GP , GR)

= λR(t |TP ,ΔP = 0, GP , GR){ψθ(u, v)}ΔP , (8)
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where

ψθ(u, v) =
Cθ(u, v)∂Cθ(u, v)/∂u∂v

{∂Cθ(u, v)/∂u} {∂Cθ(u, v)/∂v}
,

denotes the cross-ratio function for local measure of depen-
dence between a pair of survival times (Clayton, 1978). In
words, the cross-ratio function ψθ(u, v) evaluated at u =
SGR(t) and v = SGP (TP ) can be interpreted as the “hazard-
ratio” for a relative at time t associated with the case–control
status (ΔP = 1 vs. 0) of the index proband. Under Clayton’s
copula model (equation (3)), ψθ(u, v) = θ is constant over
time, with the values of θ = 1, θ > 1, and θ < 1 correspond-
ing to independence, positive dependence, and negative in-
dependence, respectively. Shih and Chatterjee (2002) further
showed that for copula models one can write

λR(t |TP ,ΔP = 0, GP , GR)

= λ0(t)e
GRβ(t)φθ

{
SGR(t), SGP (TP )

}
, (9)

where

φθ(u, v) = u
∂Cθ(u, v)

∂u

/
Cθ(u, v).

Based on formulas (8) and (9), which assume that the geno-
types of the relatives are available, Shih and Chatterjee (2002)
observed that λR(t |TP , ΔP , GP , GR) has a “PH” form with
“time-dependent covariates,” which, other than β(t), depend
on the survival times of probands and relatives only through
the values of the associated marginal survival functions. Thus,
they proposed estimating λ0(t) by iteratively fitting a Nelson–
Aalen estimator that corresponds to solving the unbiased es-
timating equation,

dΛ0(t)S
(0)(β, θ,Λ0, t) = dN++(t), (10)

where

S(0)(β, θ,Λ0, t) =

n∑
i=1

mi∑
j=1

I
(
TR

ij ≥ t
)

× e
GR

ij β(t)
HGR

ij ,G
P
i
,TP

i
,ΔP

i
(t;β, θ,Λ0),

with

HGR,GP ,TP ,ΔP (t;β, θ,Λ0) = φθ

{
SGR(t), SGP (TP )

}
×ψθ

{
SGR(t), SGP (TP )

}ΔP

.

In our context, the genotypes of the relatives (GR
ij ) are not

known; thus the estimating equation (10) cannot be used di-
rectly. In this case, a natural way to obtain an unbiased es-
timating equation is to consider the conditional expectation
of the estimating equation (10) given the observed data. In
particular, we propose the estimating equation

dΛ0(t)S̃
(0)(β, θ,Λ0, t) = dN++(t), (11)

where

S̃(0)(β, θ,Λ0, t)

=

m∑
i=1

ni∑
j=1

I
(
TR

ij ≥ t
)

×E
{
e
GR

ij β(t)
HGR

ij ,G
P
i
,TP

i
,ΔP

i
(t;β, θ,Λ0)

∣∣TR
ij ,Δ

R
ij , T

P
i ,ΔP

i , G
P
i

}
.

(12)

The unbiasedness of the estimating equation (11) follows from
a standard conditional expectation argument showing that

ES(0)(β, θ,Λ0, t) = ES̃(0)(β, θ,Λ0, t). The forms of equations
(11) and (12) suggest an ES algorithm, where, at the (s + 1)th
iteration, the E-step evaluates the conditional expectation in
formula (11) with respect to the conditional distribution

Pr
γ,Λ(s)

0

{
GR

ij = g
∣∣TR

ij ,Δ
R
ij , T

P
i ,ΔP

i ,G
P
j

}
=

Pr
β,θ,Λ(s)

0

(
TR

ij ,Δ
R
ij , T

P
ij ,Δ

P
ij

∣∣GR
ij = g,GP

ij

)
Prf

(
GR

ij = 1
∣∣GP

ij

)∑
g′

Pr
β,θ,Λ(s)

0

(
TR

ij ,Δ
R
ij , T

P
ij ,Δ

P
ij

∣∣GR
ij = g′,GP

ij

)
Prf

(
GR

ij = g′
∣∣GP

ij

) ,
and the S-step updates λ0(t) using the closed-form formula

λ
(s+1)
0

(
t(i)

)
=

n∑
i=1

mi∑
j=1

δRij I
(
TR

ij = t(i)
)

S̃0

(
u;β, θ,Λ

(s)
0

) .

In this estimation strategy, information on the relative
risk parameters β is derived from both kin–cohort and case–
control data. The underlying assumption is that the relative
risk associated with the genetic variant is homogeneous in
the population of the relatives and in the population from
which the case–control sample has been selected. The assump-
tion can be violated in several ways. The association between
the genetic variant and the disease may be distorted in the
case–control sample if cases under study are prevalent and
the survival after disease incidence is related to the genetic
variant under study. The disease history data of the rela-
tives, in contrast, are not affected by such survival bias, as
data on the relatives are collected through interview of the
probands. Nonhomogeneity of relative risk can also occur if
the case–control probands are selected from a special popula-
tion. Investigators in the National Cancer Institute, for exam-
ple, are currently conducting a nested case–control study of
breast cancer within a cohort of women who work as radiation
technologists. The disease history data of the relatives of the
selected case–control subjects give us an opportunity for kin–
cohort analysis. We observe that members of the radiation
technologist cohort are exposed to certain background levels
of radiation. The relatives of the cases and controls, however,
generally do not work as radiation technologists and hence
do not have such background exposure. The effect of the ge-
netic variant on the populations with and without exposure
to background radiation may be different if the effect of the
genetic variant is modified by radiation exposure.

A comparison of two analyses can be performed to inves-
tigate the possibility of the nonhomogeneity of relative risk
estimates. In the first step of the algorithm described above,
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one can estimate β by maximizing only the kin–cohort likeli-
hood (LKC or CLKC ) and by maximizing only the case–control
likelihood (LCC ). Iterating among steps 1–5 one can then ob-
tain two estimates of the relative risk parameters, say β̂KC

and β̂CC , which pertain to the underlying populations for
the kin–cohort and the case–control data, respectively. The
estimates can be compared, either formally or informally, to
examine whether the assumption of homogeneous relative risk
is realistic.

2.5 Asymptotic Theory and Variance Estimation
For a parametric model, such as a fixed-knot piecewise expo-
nential model for the baseline hazard function, the consistency
of the various estimation methods we described follows from
standard estimating equation theory (Godambe, 1991). For a
nonparametric baseline hazard, which allows a knot at each of
the observed event times, a similar consistency result can be
expected to hold, although a rigorous proof is not yet avail-
able. Simulation studies reported in Section 4 show that the
proposed semiparametric estimation methods are consistent
both for the finite dimensional parameters β, θ, f and for the
nonparametric baseline hazard function λ0(t).

In principle, one can use estimating-equation-based vari-
ance estimators such as the so-called robust-sandwich method
that is widely used in the generalized estimating equation
(GEE) literature (Liang, Zeger, and Quaquish, 1992). Al-
though these methods work well for parametric models, their
performance in semiparametric settings has not been thor-
oughly studied. In our data application, we used a bootstrap-
based resampling method (Efron and Tibshirani, 1998) that
is known to perform well for both parametric and nonpara-
metric models. To account for possible familial correlation
between the relatives of the same proband, we use families as
the bootstrap sampling units. If there are N 1 + N 0 unique
families corresponding to N 1 + N 0 case–control probands in
the study, in each bootstrap sample we draw N1 and N0 fam-
ilies with replacement from the N1 and N0 families of case
and control probands, respectively. Once a bootstrap sam-
ple of the families is chosen, the proposed method is used to
obtain bootstrap estimates of the parameters. The empirical
percentiles for the bootstrap estimates over different boot-
strap samples are used to define the confidence intervals for
the parameter estimates.

3. Estimating Penetrance from the Case-Only Design
Once a genetic mutation has been associated with a disease,
estimation of the cumulative risk of the disease (penetrance)
for subjects who carry the genetic mutation can be important
both for estimating the impact on public health and genetic
counseling. In recent years, a number of studies have used
kin–cohort data from a sample of genotyped cases to estimate
the risk of various cancers associated with highly penetrant
rare genes such as BRCA1 and BRCA2. Use of case probands
is convenient, because recruitment of population-based con-
trols who are willing to provide samples can be expensive
and subject to selection bias. Moreover, mutations in major
genes such as BRCA1 and BRCA2 are very rare in the general
population; population-based controls will typically have very
few carriers. The cases and their relatives, on the other hand,

have a much higher frequency of the mutation carriers. Thus,
the kin–cohort analysis of family history data from a series
of genotyped cases yields a relatively quick and inexpensive
estimate of penetrance for a rare genetic mutation.

The validity of penetrance estimates based on kin–cohort
data from case probands only has been questioned. Our earlier
work (Wacholder, 1998; Gail et al., 1999a, 1999b; Chatterjee
and Wacholder, 2001) recognized that penetrance estimates
for mutation carriers will be upwardly biased in the presence
of residual familial aggregation if the analytic methods as-
sume that disease risk depends only on mutation status. Begg
(2002) elaborated on the possibility of such bias as a conse-
quence of size-biased sampling theory (Patil and Rao, 1978).
He reviewed eight published studies on the risk of breast can-
cer associated with BRCA1/2 mutations and noted that esti-
mates of penetrance from studies that used the family history
of case probands tend to be higher than those from a study
that was not susceptible to such bias. The authors concluded
that future methodological research is needed to correct for
such bias in kin–cohort studies. Whittemore and Gong (2003)
and Gong and Whittemore (2003), on the other hand, used
both the empirical data reviewed by Begg and simulation
studies to show that the degree of bias due to use of case
probands only is small relative to the standard error of the
estimates.

For the analysis of kin–cohort data from case probands
only, we propose the use of the ascertainment-corrected kin–
cohort likelihood LKC (see formula (6)). Modeling and estima-
tion of the residual familial aggregation parameter θ is key to
adjustment for ascertainment in our approach. In Section 2.3,
we described how the residual familial aggregation param-
eter θ can be estimated from kin–cohort data, using either
the full likelihood LKC or the composite likelihood CLKC . In
the composite-likelihood approach, which is based on relative-
proband doublets, the information on θ is extracted from the
comparison of disease incidence among the relatives of cases
with that among the relatives of controls (see formula (8)
and subsequent discussion). Obviously, such comparisons are
not possible when probands consist of cases only; thus the
composite likelihood CLKC intrinsically contains very little
information on θ for case-only designs. This problem with
composite likelihood is manifested in numerical instability in
optimization when estimating θ. In the joint likelihood LKC ,
on the other hand, the information on θ is derived not only
from comparison of disease incidence in relatives of cases and
controls, but also from familial aggregation of the disease
among the relatives of the same proband. Thus, even if the
probands consist of cases only, reliable estimates of θ can be
obtained based on joint disease incidence data of the relatives
from the same proband, which in turn can be used to correct
penetrance estimation for ascertainment.

We found that estimation of f internally is numerically
unstable when genotype data are not available for controls.
Thus, for analysis of data from case probands only we will
assume that the allele frequency parameter f is known or can
be estimated externally, and the third step in the iterative
scheme in Section 2.4 is omitted. Fortunately, the kin–cohort
analysis itself is not very sensitive to the value of f, as the
conditional probabilities Prf (g | gP ) involved in the likelihood
LKC do not vary much with f.
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Although many recent analyses are comparable to use of
LKC alone, the likelihood for the proband’s data, LCC , can be
informative for estimation of relative risk parameters even if
the probands consist of cases only. Thus, we considered an
alternative analysis for the case-only design in which we esti-
mated β by maximizing LKC × LCC . This approach, however,
would be more sensitive to misspecification of f, as the likeli-
hood LCC depends on the unconditional probabilities Prf (gP ),
which strongly depend on f.

4. Simulation Studies
4.1 Performance Assessment

4.1.1 Case–control design. We studied performance of the
proposed methods through simulated studies of breast cancer
involving a dominant gene and family structure consisting
of proband, sister, and mother. We considered two simula-
tion scenarios, one involving a rare generic variant (f = 0.01)
with large effect (hazard ratio = 5) and the other involving a
more common variant (f = 0.2) with a modest effect (hazard
ratio = 2.0). Given genotypes of the three relatives, we as-
sumed their joint time-to-cancer incidence follows Clayton’s
copula model with the marginal distributions for the three rel-
atives specified by Cox’s proportional hazard model. In par-
ticular, we assumed the marginal risk for a noncarrier (G =
0) relative follows a Weibull distribution with shape and scale
parameters chosen so that cumulative risk until age 50 and
70 years is 5% and 13%, respectively. The marginal risk for
a carrier (G = 1) was then specified so that the hazard for a
carrier was proportional to the hazard for a noncarrier, with
proportionality constant (hazard ratio) being 5 and 2 for the
rare and the common variants, respectively. We chose the as-
sociation parameter θ in the copula model to be 2.0 which
approximately corresponds to a 2-fold higher risk of breast
cancer among relatives of breast cancer cases compared to
relatives of breast cancer controls in our simulation setup.

Based on the above model, we first generated data for a ran-
dom sample of families of three individuals: (proband, sister,
mother). We generate the genotype (G = 1 or 0) for three rela-
tives based on Mendelian probabilities. Given genotypes of the
relatives, we generated time-to-cancer incidence (T) for the
relatives from the trivariate copula distribution by first gen-
erating data for the proband from the appropriate marginal
distribution, then for the sister given the proband, and fi-
nally for the mother given the sister and the proband from
appropriate conditional distributions. Data from the marginal
and the conditional distributions were generated by appropri-
ate inverse distribution function transformations of uniform
distributions. After generating time-to-cancer incidence, we
generated censoring/current age (C) for probands, sisters, and
mothers from independent normal distributions with means
50, 50, and 70, respectively, and with a common variance of
10. Following standard convention, we assume the observed
data consist of whether the relatives had cancer (T ≤ C,
Δ = 1) or not (T > C, Δ = 0), the age at onset (T) for
relatives who had cancer (Δ = 1), and the current/censoring
age (C) for relatives who were cancer free (Δ = 0). Follow-
ing the above scheme, we randomly sampled a large number
of triplets, which in turn were used as the source population
from which 2000 triplets with case probands (Δ = 1) and 2000
triplets with control probands (Δ = 0) were selected.

We analyzed each simulated data set using two approaches:
in one β and θ were estimated using the composite likelihood
CLKC × LCC and in the other β and θ were estimated using
the joint likelihood LKC × LCC . In both approaches, f was
estimated using LCC and the baseline hazard function was
estimated using the nonparametric ES algorithm described
in Section 2.4. We assumed genotype data are available only
for probands, but not for relatives. To examine the perfor-
mance of the proposed method in estimating age-specific haz-
ard ratios, we analyzed each data set using a piecewise propor-
tional hazard model that allows estimation of separate hazard
ratios for age intervals: <50, 50–60, 60–70, and >70 years.
Compared to previous methods (Gail et al., 1999a, 1999b;
Chatterjee and Wacholder, 2001; Moore et al., 2001), one
novel aspect of the current methodology is that it accounts
for residual familial correlation of the disease that cannot be
explained by the gene under study. To examine the benefit
of such extension, we implemented both the composite and
joint likelihood approaches with θ fixed at 1.0, which corre-
sponds to assumption of no residual familial correlation, and
compared the results with those in which we estimated θ from
the data. Table 1 shows simulated averages and standard er-
rors for estimates of hazard ratio parameters (β), residual
correlation parameters (θ), and cumulative risks up to age 50
and 70 years for noncarriers (F 0(50) and F 0(70)) and those
for carriers (F 1(50) and F 1(70)).

We first observe that when θ = 1 is assumed, the cumulative
risks for noncarriers are substantially overestimated (Table 1).
Intuitively, this is expected. When θ = 1 or no residual famil-
ial aggregation has been assumed, the kin–cohort likelihood
of relatives’ disease incidence data becomes free of the ascer-
tainment mechanism that is defined by the case–control status
(Yi0) of the probands. An estimate of F 0(t) based on CLKC

that is not adjusted for case–control ascertainment overesti-
mates the baseline risk for the general population, as relatives
of a case-enriched sample of probands are expected to have
higher disease incidence than that of the general population.
The hazard ratio parameters are also overestimated; the mag-
nitude of the bias, however, is generally smaller when β is
estimated using CLKC × LCC than using LKC × LCC . The ro-
bustness of the composite likelihood method can be attributed
to the fact that CLKC , unlike LKC , is only affected by corre-
lation between the relatives and the proband, but not by the
correlation between relatives of the same proband. Finally,
we observe that when θ = 1 is assumed, the upward biases
in F 0(t) create an upward bias in the estimation of F 1(t). In
contrast, when θ is estimated from the data, which in turn
is then used to account for case–control ascertainment, the
biases in estimates of the cumulative risk as well as hazard
ratio parameters disappear while the corresponding standard
errors only increase slightly. The precision of estimates of the
hazard ratio parameters was very similar for the joint likeli-
hood LKC × LCC and the composite likelihood CLKC × LCC .
For estimation of θ, however, a slight gain in efficiency is ob-
served for the joint likelihood.

Table 2 shows the relative informativeness of kin–cohort
and case–control data for estimation of the hazard ratio pa-
rameters (β), computed as the inverse variance for estimates
of β using LKC - (or CLKC -) only and LCC - only, respectively,
as a ratio to that when β is estimated using LKC × LCC (or
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Table 1
Case–control studies: simulation study to assess bias due to the assumption of no residual familial aggregation (θ = 1) and
performance of the proposed methodology that estimates familial aggregation from the data assuming Clayton’s copula model

High-risk rare gene Moderate-risk common gene

Method True θ = 1 Estimated θ True θ = 1 Estimated θ
used parameter Mean (SE) Mean (SE) parameter Mean (SE) Mean (SE)

CLKC × LCC exp(β1) = 5 5.02 (0.63) 4.96 (0.63) exp(β1) = 2 2.03 (0.14) 1.99 (0.13)
exp(β2) = 5 5.29 (1.05) 4.92 (0.99) exp(β2) = 2 2.07 (0.22) 1.99 (0.21)
exp(β3) = 5 5.58 (1.44) 4.91 (1.29) exp(β3) = 2 2.13 (0.31) 1.99 (0.28)
exp(β4) = 5 5.86 (3.10) 4.82 (2.66) exp(β4) = 2 2.18 (0.48) 1.96 (0.42)
θ = 2 NA 1.99 (0.13) θ = 2 NA 1.99 (0.12)
f = 0.01 0.01 (0.001) 0.01 (0.001) f = 0.2 0.20 (0.006) 0.20 (0.006)
F 0(50) = 0.05 0.06 (0.003) 0.05 (0.003) F 0(50) = 0.05 0.06 (0.004) 0.05 (0.003)
F 0(70) = 0.13 0.17 (0.010) 0.13 (0.007) F 0(70) = 0.13 0.17 (0.008) 0.13 (0.008)
F 1(50) = 0.20 0.28 (0.030) 0.21 (0.023) F 1(50) = 0.09 0.12 (0.006) 0.09 (0.005)
F 1(70) = 0.50 0.63 (0.050) 0.49 (0.050) F 1(70) = 0.24 0.32 (0.014) 0.24 (0.013)

LKC × LCC exp(β1) = 5 5.30 (0.66) 4.96 (0.63) exp(β1) = 2 2.13 (0.15) 1.99 (0.13)
exp(β2) = 5 5.67 (1.14) 4.92 (0.99) exp(β2) = 2 2.21 (0.24) 1.99 (0.21)
exp(β3) = 5 6.12 (1.59) 4.92 (1.30) exp(β3) = 2 2.35 (0.36) 1.99 (0.28)
exp(β4) = 5 6.74 (3.45) 4.85 (2.77) exp(β4) = 2 2.60 (0.62) 1.96 (0.43)
θ = 2 NA 2.00 (0.12) θ = 2 NA 2.00 (0.11)
f = 0.01 0.01 (0.001) 0.01 (0.001) f = 0.2 0.19 (0.006) 0.20 (0.006)
F 0(50) = 0.05 0.06 (0.003) 0.05 (0.003) F 0(50) = 0.05 0.06 (0.004) 0.05 (0.003)
F 0(70) = 0.13 0.17 (0.006) 0.13 (0.007) F 0(70) = 0.13 0.17 (0.008) 0.13 (0.008)
F 1(50) = 0.20 0.29 (0.029) 0.21 (0.023) F 1(50) = 0.09 0.13 (0.006) 0.09 (0.005)
F 1(70) = 0.50 0.66 (0.051) 0.49 (0.050) F 1(70) = 0.24 0.33 (0.015) 0.24 (0.013)

CLKC × LCC ). Kin–cohort data from the relatives add sub-
stantial information on β in addition to the traditional case–
control analysis for all age groups, even though relatives are
not genotyped. The gain is more substantial for the rare vari-
ant and for the older age groups for which the case–control
analysis lacks power due to small numbers of variants. The
added value of kin–cohort analysis for relative risk estimation
for common cancers, such as breast cancer, was also observed
by Saunders and Begg (2003).

4.1.2 Case-only design. In Section 3, we described how
the ascertainment-corrected kin–cohort likelihood LKC or the
combined kin–cohort and proband’s likelihood LKC × LCC can
be used to analyze the disease incidence data of the relatives
of a sample of genotyped cases. We studied the performance of
this approach using the same simulation setup as above except
that now we assumed data were available only from the sam-
ple of case probands. Table 3 shows simulation results when

Table 2
Case–control studies: relative efficiency for log of hazard ratios from kin–cohort and case–control analysis

High-risk rare gene Moderate-risk common gene

ARE compared to ARE compared to ARE compared to ARE compared to
CLKC × LCC LKC × LCC CLKC × LCC CLKC × LCC

Parameter CLKC LCC LKC LCC CLKC LCC LKC LCC

β1 0.39 0.55 0.38 0.54 0.12 0.87 0.12 0.86
β2 0.39 0.56 0.40 0.53 0.16 0.80 0.16 0.80
β3 0.48 0.39 0.49 0.39 0.27 0.75 0.26 0.75
β4 0.67 0.49 0.58 0.44 0.49 0.43 0.49 0.44

data were analyzed assuming the correctly specified Clayton’s
model.

For the study of a highly penetrant rare gene using LKC

alone, assumption of no residual familial aggregation (θ = 1)
leads to slight underestimation of the hazard ratio parameters
and substantial, but not severe, overestimation of the pene-
trance parameters F 1(50) and F 1(70). In the same scenario,
when the combined likelihood LKC × LCC was used, the as-
sumption of θ = 1 leads to overestimation of the hazard ratio
parameters and larger bias for the cumulative risk parameters.
For the low penetrant common gene, on the other hand, the
assumption of θ = 1 causes very little bias for estimation of
the hazard ratio parameters, but results in severe overestima-
tion of the penetrance parameters F 1(50) and F 1(70). When
θ is estimated from the data assuming the correct model for
residual familial correlation, the bias in estimates of all the
parameters becomes much smaller. Use of LKC × LCC instead
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Table 3
Case–only studies: simulation study to assess bias due to the assumption of no residual familial aggregation (θ = 1) and

performance of the proposed methodology that estimates familial aggregation from the data assuming Clayton’s copula model

High-risk rare gene Moderate-risk common gene

Method True θ = 1 Estimated θ True θ = 1 Estimated θ
used parameter Mean (SE) Mean (SE) parameter Mean (SE) Mean (SE)

CLKC × LCC exp(β1) = 5 4.40 (0.84) 4.61 (1.34) exp(β1) = 2 1.98 (0.42) 1.99 (0.42)
exp(β2) = 5 4.31 (1.37) 4.54 (1.68) exp(β2) = 2 2.03 (0.64) 2.06 (0.66)
exp(β3) = 5 4.31 (1.81) 4.58 (2.12) exp(β3) = 2 2.04 (0.70) 2.10 (0.73)
exp(β4) = 5 4.16 (5.37) 4.53 (5.76) exp(β4) = 2 1.86 (0.75) 1.89 (0.81)
θ = 2 NA 1.93 (0.52) θ = 2 NA 2.07 (0.60)
F 0(50) = 0.05 0.08 (0.005) 0.05 (0.010) F 0(50) = 0.05 0.08 (0.010) 0.05 (0.020)
F 0(70) = 0.13 0.23 (0.010) 0.14 (0.030) F 0(70) = 0.13 0.23 (0.019) 0.14 (0.050)
F 1(50) = 0.20 0.32 (0.045) 0.20 (0.060) F 1(50) = 0.09 0.16 (0.016) 0.09 (0.030)
F 1(70) = 0.50 0.67 (0.069) 0.47 (0.120) F 1(70) = 0.24 0.40 (0.030) 0.26 (0.070)

LKC × LCC exp(β1) = 5 4.95 (0.50) 4.99 (0.50) exp(β1) = 2 2.03 (0.11) 2.01 (0.11)
exp(β2) = 5 5.42 (0.97) 4.93 (1.00) exp(β2) = 2 2.09 (0.21) 2.00 (0.20)
exp(β3) = 5 5.82 (1.56) 4.96 (1.42) exp(β3) = 2 2.17 (0.32) 2.01 (0.29)
exp(β4) = 5 6.39 (3.98) 4.99 (3.31) exp(β4) = 2 2.16 (0.53) 1.96 (0.47)
θ = 2 NA 1.99 (0.54) θ = 2 NA 2.07 (0.59)
F 0(50) = 0.05 0.08 (0.005) 0.05 (0.011) F 0(50) = 0.05 0.08 (0.005) 0.05 (0.011)
F 0(70) = 0.13 0.23 (0.009) 0.13 (0.029) F 0(70) = 0.13 0.22 (0.010) 0.13 (0.029)
F 1(50) = 0.20 0.35 (0.028) 0.22 (0.051) F 1(50) = 0.09 0.16 (0.008) 0.09 (0.022)
F 1(70) = 0.50 0.75 (0.044) 0.51 (0.101) F 1(70) = 0.24 0.41 (0.017) 0.24 (0.055)

of LKC alone yields dramatically more precise estimates of
relative risk parameters as well as more precise estimates of
cumulative risks.

4.2 Study of Robustness
We studied the performance of the proposed methodology
when the model for residual familial correlation is misspec-
ified. In particular, we generated data using the same simula-
tion scheme as above except that time-to-disease incidence for
subjects in a family was generated from Frank’s copula model
instead of Clayton’s model. We fixed the association param-
eter (θ) for Frank’s model so that it corresponded overall to
a 2-fold higher incidence of breast cancer among relatives of
breast cancer cases than among relatives of breast cancer con-
trols. Different copula models correspond to different patterns
of age-specific familial aggregation. Clayton’s model, for ex-
ample, assumes risk is similar for relatives of early and late
onset cases. Frank’s model, in contrast, assumes moderately
higher risk for relatives of early onset cases. Table 4 shows
the bias and standard error of the estimates of different pa-
rameters of interest under the case–control design when the
simulated data were analyzed assuming the incorrect Clayton
model. We observe that bias due to the misspecified corre-
lation model was generally quite small for both hazard ratio
and cumulative risk parameters.

The simulation study revealed some intrinsic identifiabil-
ity problems for analysis of data from the case-only design
with a misspecified association model. For a large fraction of
simulated data, the algorithm did not converge. Inspection
of intermediate steps suggested that joint estimation of the
baseline hazard λ0(t) and correlation parameter θ is unsta-
ble, although for a fixed value of one parameter the other
parameter can be estimated quite reliably. In the case-only

data, information on θ comes only from the joint incidence
status of the relatives. Estimation of θ in this approach re-
quires accounting for the marginal hazard for the individ-
ual relatives. However, estimation of marginal hazards using
the relatives of cases requires correcting for ascertainment
based on the correlation parameter θ itself. Thus, the circu-
larity of this estimation problem may cause θ and λ0(t) to be
jointly ill identified unless the correlation model is correctly
specified.

We also studied the identifiability problem with the case-
only design assuming the known Weibull parametric form for
λ0(t). In this situation, the algorithm converged for about
90% of the simulated data sets, although the estimates of
θ were often unstable with very large values. Table 5 shows
the bias and standard error of hazard ratio and absolute risk
parameters obtained using the converged data sets, ignoring
the problem that the estimates of θ were unstable for some of
the converged data sets. We observe that all of the cumulative
risk parameters are severely underestimated both for analyses
based on LKC and LKC × LCC . Estimates of the relative risk
parameters are also biased, the biases often being larger than
when θ = 1 was assumed (Table 3).

Finally, we also studied the robustness of the two likeli-
hoods LKC and LKC × LCC to misspecification of the allele
frequency parameter f (results not shown). In brief, we sim-
ulated data from a low penetrant (β = log(2)) common gene
(f = 0.2), but analyzed the data assuming f = 0.3. The cop-
ula model for residual correlation was correctly specified. The
Monte Carlo average estimates of the hazard ratio parameters
in the four age groups were 2.23, 2.33, 2.34, and 1.98 when
LKC was used and were 1.09, 1.07, 1.09, and 1.15 when LKC ×
LCC was used. Thus, the analysis based on LKC × LCC is very
sensitive to misspecification of f.
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Table 4
Simulation study to assess robustness of the case–control design against model
misspecification of familial correlation. Data are generated from Frank’s model,

but are analyzed using Clayton’s model.

High-risk rare gene Moderate-risk common gene

Method True True
used parameter Mean (SE) parameter Mean (SE)

CLKC × LCC exp(β1) = 5 4.78 (0.61) exp(β1) = 2 1.99 (0.13)
exp(β2) = 5 4.65 (0.96) exp(β2) = 2 1.99 (0.21)
exp(β3) = 5 4.45 (1.20) exp(β3) = 2 1.97 (0.27)
exp(β4) = 5 4.31 (2.23) exp(β4) = 2 1.91 (0.43)
f = 0.01 0.01 (0.001) f = 0.2 0.20 (0.006)
F 0(50) = 0.05 0.05 (0.003) F 0(50) = 0.05 0.05 (0.003)
F 0(70) = 0.13 0.13 (0.007) F 0(70) = 0.13 0.13 (0.007)
F 1(50) = 0.20 0.20 (0.023) F 1(50) = 0.09 0.09 (0.005)
F 1(70) = 0.50 0.47 (0.048) F 1(70) = 0.24 0.24 (0.013)

LKC × LCC exp(β1) = 5 4.82 (0.62) exp(β1) = 2 2.00 (0.13)
exp(β2) = 5 4.69 (0.96) exp(β2) = 2 2.00 (0.21)
exp(β3) = 5 4.49 (1.22) exp(β3) = 2 1.99 (0.28)
exp(β4) = 5 4.38 (2.29) exp(β4) = 2 1.94 (0.44)
f = 0.01 0.01 (0.001) f = 0.2 0.20 (0.006)
F 0(50) = 0.05 0.05 (0.003) F 0(50) = 0.05 0.05 (0.003)
F 0(70) = 0.13 0.13 (0.007) F 0(70) = 0.13 0.13 (0.008)
F 1(50) = 0.20 0.20 (0.022) F 1(50) = 0.09 0.09 (0.005)
F 1(70) = 0.50 0.47 (0.048) F 1(70) = 0.24 0.24 (0.013)

5. Example
We applied the proposed methodology to data from the Wash-
ington Ashkenazi Study (WAS) (1997). In this study, 5318
Ashkenazi Jewish volunteers living in the Washington, D.C.
area were genotyped for three specific mutations in BRCA1
and BRCA2 genes and were interviewed for detailed personal
and family history of various cancers. Struewing et al. (1997)

Table 5
Simulation study to assess robustness of the case-only design against model

misspecification of familial correlation. Data are generated from Frank’s model,
but are analyzed using Clayton’s model.

High-risk rare gene Moderate-risk common gene

Method True True
used parameter Mean (SE) parameter Mean (SE)

LKC exp(β1) = 5 5.20 (1.26) exp(β1) = 2 2.28 (0.49)
exp(β2) = 5 4.50 (1.44) exp(β2) = 2 2.00 (0.41)
exp(β3) = 5 3.96 (1.72) exp(β3) = 2 1.80 (0.41)
exp(β4) = 5 3.45 (2.66) exp(β4) = 2 1.49 (0.45)
F 0(50) = 0.05 0.02 (0.014) F 0(50) = 0.05 0.02 (0.013)
F 0(70) = 0.13 0.06 (0.042) F 0(70) = 0.13 0.06 (0.038)
F 1(50) = 0.20 0.10 (0.068) F 1(50) = 0.09 0.05 (0.029)
F 1(70) = 0.50 0.23 (0.149) F 1(70) = 0.24 0.13 (0.072)

LKC × LCC exp(β1) = 5 4.83 (0.48) exp(β1) = 2 2.01 (0.10)
exp(β2) = 5 4.35 (0.79) exp(β2) = 2 1.93 (0.16)
exp(β3) = 5 3.88 (1.06) exp(β3) = 2 1.82 (0.21)
exp(β4) = 5 3.32 (1.90) exp(β4) = 2 1.58 (0.29)
F 0(50) = 0.05 0.02 (0.014) F 0(50) = 0.05 0.02 (0.013)
F 0(70) = 0.13 0.06 (0.041) F 0(70) = 0.13 0.06 (0.038)
F 1(50) = 0.20 0.09 (0.067) F 1(50) = 0.09 0.04 (0.027)
F 1(70) = 0.50 0.24 (0.153) F 1(70) = 0.24 0.12 (0.071)

estimated penetrance of breast, ovarian, and a number of
other cancers associated with the BRCA1/2 mutations by an-
alyzing cancer incidence data of the relatives using the origi-
nal kin–cohort analytic approach of Wacholder et al. (1998).
Chatterjee et al. (2001) and Moore et al. (2001) analyzed
the breast cancer incidence data from the WAS relatives us-
ing various pseudo-likelihood approaches that corrected for
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Table 6
Analysis of Washington Ashkenazi Study using Clayton’s model for familial correlation

CLKC only LCC only CLKC × LCC
Parameter Est (95% CI) Est (95% CI) Est (95% CI)

HR[≤50] = 6.95 (3.73, 12.52) 8.58 (5.63, 12.57) 7.72 (4.99, 10.54)
HR[>50, ≤ 60] = 10.62 (4.57, 24.83) 6.22 (1.92, 11.65) 8.47 (4.61, 14.47)
HR[>60] = 3.17 (0.03, 19.18) 1.34 (0.003, 4.37) 2.20 (0.27, 7.09)
f = – 0.01 (0.009, 0.014) 0.01 (0.009, 0.014)
θ = 1.35 (1.07, 1.68) – 1.35 (1.07, 1.69)
F 0(50) = 0.05 (0.045, 0.058) – 0.05 (0.045, 0.057)
F 0(70) = 0.14 (0.131, 0.155) – 0.14 (0.132, 0.155)
F 1(50) = 0.31 (0.188, 0.458) – 0.33 (0.241, 0.418)
F 1(70) = 0.64 (0.441, 0.923) – 0.60 (0.486, 0.732)

the nonmonotonicity problem in the penetrance estimates ob-
tained from the method of moment of approach of Wacholder
et al. (1998).

In all of the previous analyses of WAS data, estimates
of penetrance parameters utilized information only from the
kin–cohort disease incidence data of the relatives, but not
from the case–control data of the probands (volunteers).
Moreover, in all of these analyses the possibility of bias due
to presence of residual familial aggregation was ignored. Al-
though in this study the volunteers were not selected based
on case–control sampling, the effect of proband ascertainment
was a potential concern, as it was observed that women with
personal history of a breast cancer were more likely to volun-
teer than women who did not have such history. We applied
the proposed composite-likelihood methodology to breast can-
cer data available from the female volunteers of this study.
This novel analysis efficiently combines the family history
(kin–cohort) and personal history (case–control) data of the
volunteers, produces an estimate of residual familial aggre-
gation, and accounts for the potential effect of differential
participation of the cases and controls.

We first examined the homogeneity of the hazard ratio pa-
rameters between the population underlying the sample of
volunteers and the population underlying the relatives of the
volunteers. The first two columns of Table 6 show the hazard
ratio estimates and 95% bootstrap confidence intervals (CI)
based on CLKC - only and LCC - only. Both sets of estimates
show similar patterns of age-specific risk from BRCA1/2 mu-
tations and suggest much stronger effects of the mutations
before the age of 60 years. Quantitatively, there are some dif-
ferences between the individual point estimates; these differ-
ences, however, are well within the limits of uncertainty and
hence are not statistically significant. Estimates of various pa-
rameters based on CLKC × LCC (kin–cohort and case–control
likelihood combined) are shown in the third column of Table 6.
We observe that the estimate of lifetime penetrance (F 1(70))
as 0.60 (95% CI: 0.49, 0.76) was very close to its estimates
from all previous studies that did not account for ascertain-
ment. Thus, it seems differential participation of the cases and
controls in this study did not create bias in previous estimates
of penetrance. Our analysis also shows the value of utilizing
information on the hazard ratio parameters that is contained
in the case–control likelihood. The estimate of penetrance
based only on the kin–cohort likelihood of the relatives was

0.64, a number that was very similar to the overall estimate
from the combined analysis, but had a much larger confidence
interval.

We estimated the residual familial correlation parameter in
Clayton’s model to be 1.35 (95% CI: 1.07, 1.68), which cor-
responds to approximately 1.35-fold increased risk of breast
cancers associated with a family history of the disease among
noncarriers of the BRCA1/2 mutation. We note that in the
composite-likelihood methodology the information on the cor-
relation parameter is obtained from the relationship between
the proband and the relatives. In contrast, in a previous study
where we analyzed the correlation between the relatives of
the same proband (Chatterjee et al., 2001), we had esti-
mated about a 2-fold increased risk of breast cancer associated
with family history of the disease among noncarriers. Similar
strength of residual familial aggregation of breast cancer af-
ter accounting for the BRCA1/2 mutation was also reported
by Claus et al. (1998) based on the Cancer and Steroid Hor-
mone (CASH) case–control study. Because in the composite-
likelihood approach the estimate of familial aggregation is es-
sentially based on the comparison of family history between
cases and controls, a possible explanation for the attenuated
estimate of familial aggregation in this analysis is that con-
trols with a family history of breast cancer were more likely
to participate in this study, diminishing the true difference
between family history of cases and controls.

6. Discussion
In summary, we have developed a methodology for analyz-
ing case–control studies of genetic variants that collect de-
tailed disease history information, but not genotypes, on rel-
atives. We consider a modeling approach that is flexible, has
a marginal parameter interpretation, and yet remains compu-
tationally tractable. We develop an estimation methodology
that combines information on relative risk parameters from
kin–cohort data of relatives and case–control data of partici-
pants. In addition, the method estimates the baseline risk and
familial aggregation parameters using the kin–cohort data of
the relatives. We also propose some modifications that can
be used to analyze disease incidence data of relatives from a
sample of genotyped cases only.

We have utilized copula models that assume the same corre-
lation for different pairs of relatives. The proposed composite-
likelihood approach can be easily generalized to allow for
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different correlation (θ) parameters for different types of
relative-proband relationships. The joint-likelihood approach,
however, would require specifying a full joint distribution for
all relatives in a family that can incorporate different pair-
wise correlation parameters. Such multivariate models are not
currently available within the framework of copula modeling.
Future research is merited for such extensions.

When case and control probands are available, the com-
posite likelihood (CLKC × LCC ) or the joint likelihood (LKC ×
LCC ) yield unbiased estimates of relative risk and cumula-
tive risk parameters, unlike the methods that assume condi-
tional independence of phenotypes given genotypes (θ = 1);
these latter methods lead to overestimates of cumulative risk
(Table 1). Moreover, we found that the proposed methods
yield nearly unbiased estimates of relative risk and cumula-
tive risk parameters even under modest misspecification of
the copula model of association. We recommend the use of
our method with a Clayton copula model, unless other infor-
mation indicates a need for a different copula model.

Recently several researchers have raised and studied the
issue of ascertainment bias in kin–cohort estimation of cumu-
lative risk from the family histories of case-only probands. In
the reported simulations with case-only probands (Table 3),
we observe that if the true cumulative risk conferred by a
gene is 50%, then the bias from ignoring residual familial cor-
relation (θ = 1) is modest in our analysis based on LKC , but
somewhat more important if LKC × LCC is used. The upward
bias can be quite important if the true cumulative risk is 25%
(Table 3). Gong and Whittemore (2003) reported little abso-
lute bias in penetrance estimation using the relatives of cases,
probably because they assumed that the hazard in noncarri-
ers was known, and also because they studied the situation in
which the true penetrance of the gene was 70%.

In principle, one can correct for ascertainment bias even
with case-only probands if the correct model for residual
familial correlation is known (Table 3). Analyses based on
LKC × LCC yield more precise estimates of relative risks and
cumulative risks than analyses based on LKC alone. The case-
only proband design, however, has inherent limitations. First,
external information on allele frequencies must be used be-
cause case-only probands provide very little information on
allele frequency. The analysis based on LKC only is more ro-
bust to misspecification of the allele frequency parameter than
that based on LKC × LCC . A more important limitation of
the case-only design is that inferences are not robust to mis-
specification of the copula model (Table 5), unlike the situa-
tion when both case and control probands are available. Thus,
unless one has information on residual correlation structure,
another approach is needed.

One possibility with case-only probands is to limit estima-
tion to relative risks. For example, the Clayton model with
θ = 1 (Table 3), which corresponds to assuming conditional
independence given individual genotypes, yielded nearly un-
biased relative risk estimates for a low-penetrant common
variant and only modest bias for a high-penetrant rare vari-
ant. If one has external information on allele frequency and
on the age-specific risk of the disease in the general popu-
lation, λ∗(i), as can be obtained from cancer registry data,
one can use the age-specific relative risk estimates to ob-
tain age- and genotype-specific hazard rates. For example,

for the dominant model, the attributable risk in age interval
i is AR(i) = 1 − [{f 2 + 2f(1 − f)}βi + (1 − f)2]

−1
. The base-

line hazard is estimated from λ0(i) = {1 −AR(i)}λ∗(i), and
the hazard for carriers of a dominant mutation is estimated
from exp(βi)λ0(i) by substituting appropriate parameter esti-

mates, β̂i and 1 − ˆAR(i). Thus, it may be possible to supple-
ment information on relative risk from the case-only proband
study to obtain reliable cumulative risk estimates. The same
strategy can also be adopted for case–control studies and
may yield more precise estimates of cumulative risk parame-
ters than internal estimates of the baseline hazard function.
For many diseases, however, reliable external data may not
be available, particularly for special subgroups, such as the
Ashkenazi Jewish population analyzed in Section 5.
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